Urban Built-Up Area Extraction from Landsat TM/ETM+ Images Using Spectral Information and Multivariate Texture

نویسندگان

  • Jun Zhang
  • Peijun Li
  • Jinfei Wang
چکیده

Urban built-up area information is required by various applications. However, urban built-up area extraction using moderate resolution satellite data, such as Landsat series data, is still a challenging task due to significant intra-urban heterogeneity and spectral confusion with other land cover types. In this paper, a new method that combines spectral information and multivariate texture is proposed. The multivariate textures are separately extracted from multispectral data using a multivariate variogram with different distance measures, i.e., Euclidean, Mahalanobis and spectral angle distances. The multivariate textures and the spectral bands are then combined for urban built-up area extraction. Because the urban built-up area is the only target class, a one-class classifier, one-class support vector machine, is used. For comparison, the classical gray-level co-occurrence matrix (GLCM) is also used to extract image texture. The proposed method was evaluated using bi-temporal Landsat TM/ETM+ data of two megacity areas in China. Results demonstrated that the proposed method outperformed the use of spectral information alone and the joint use of the spectral information and the GLCM texture. In particular, the inclusion of multivariate variogram textures with spectral angle distance achieved the best results. The proposed method provides an effective way of extracting urban built-up areas from Landsat series images and could be applicable to other applications. OPEN ACCESS Remote Sens. 2014, 6 7340

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Normalized Difference Impervious Surface Index (MNDISI) for Automatic Urban Mapping from Landsat Imagery

Impervious surface area (ISA) is a key factor for monitoring urban environment and land development. Automatic mapping of impervious surfaces has attracted growing attention in recent years. Spectral built-up indices are considered promising to map ISA distributions due to their easy, parameter-free implementations. This study explores the potentials of impervious surface indices for ISA mappin...

متن کامل

Monitoring the Built-up Area Transformation Using Urban Index and Normalized Difference Built-up Index Analysis

Makassar is one of the metropolitan cities located in Indonesia which recently experiences massive an increased construction because of population growth. Mapping the spatial distribution and development of the built-up region is the best method that can use as an indicator to set the urban planning policy. The purpose of this study is to identify changes in land use and density in Makassar Cit...

متن کامل

Satellite Image Processing for Land Use and Land Cover Mapping

In this paper, urban growth of Bangalore region is analyzed and discussed by using multi-temporal and multi-spectral Landsat satellite images. Urban growth analysis helps in understanding the change detection of Bangalore region. The change detection is studied over a period of 39 years and the region of interest covers an area of 2182 km 2 . The main cause for urban growth is the increase in p...

متن کامل

Data Fusion of Multi-source Remote Sensing Based on Level Set Method and Application to Urban Road Extraction

Using data fusion of multi-spectral and microwave radar images, a semiautomatic method is developed based on the level set method for application to urban road extraction. The fast marching method of level set makes data fusion. Radar remote sensing image can make up road breaks due to shadowing of high building or tree canopy in multi-spectral image, while multi-spectral image can be of helpfu...

متن کامل

بارزسازی فرایند رسوب‌گذاری در سامانه‌های پخش سیلاب با استفاده از داده‌های تصاویر ماهواره‌ای LANDSAT، سنجنده‌های TM و ETM+

Of the applications of remote sensing and satellite images in natural resources is distinguishing and detection of changes in land surface. The image classification using Maximum Likelihood (MLC) is one the prevalent method which is used in a study of the application of TM and ETM+ satellite images to detect sediment deposition on an implemented floodwater spreading scheme. In order to implemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014